A neat identity I happened upon: the negation of an equivalence is equivalent to an exclusive or.
Equivalence: A <--> B
Or (A --> B) & (B --> A)
Or (~A v B) & (~B v A)
Negating this last
~[(~A v B) & (~B v A)]
and then applying DeMorgan's law, we get:
~(~A v B) v ~(~B v A)
Apply DeMorgan again to the parenthesized symbols for:
(A&~B) v (B&~A)
This last offers only mutually exclusive options.
|
Some Ryle essay footnotes appear on this site, which is devoted to life after physics.
There is no claim of expertise with respect to the musings on this page. Never use my stuff for homework!
Thursday, February 13, 2020
Trivial but neat
Subscribe to:
Post Comments (Atom)
Your example: [(p-->q) + (q --> p)] [~(p-->q) v (~q --> p]).~[q p] Dot means "and." The above can be r...
-
Footnote GA156 (added Jan. 18, 2023): Consider this passage from The Interpretation of Dreams by Sigmund Freud (A.A. Brill's 1914 tran...
-
Title Goes Here This is my web page
-
Gh19. We may safely say that a great many of the major philosophers have sought the nexus point between what the Greeks saw as an opposition...
No comments:
Post a Comment